# Algebras associated to separated graphs

Pere Ara

Universitat Autònoma de Barcelona

PARS, Gramado, May 2014

## Separated graphs: the initial motivation

Leavitt (1962) defined algebras  $L_K(m, n)$  for  $1 \le m \le n$  in the following way:

 $L_K(m, n)$  is the K-algebra with generators

$$\{X_{ji}, X_{ji}^* : 1 \le j \le m, 1 \le i \le n\}$$

and defining relations:

$$XX^* = I_m, \quad X^*X = I_n,$$

where  $X = (X_{ji})$ .

## Separated graphs

### Definition

A separated graph is a pair (E, C) where E is a graph,  $C = \bigsqcup_{v \in E^0} C_v$ , and  $C_v$  is a partition of  $r^{-1}(v)$  (into pairwise disjoint nonempty subsets) for every vertex v:

$$r^{-1}(v) = \bigsqcup_{X \in C_v} X.$$

(In case v is a source, we take  $C_v$  to be the empty family of subsets of  $r^{-1}(v)$ .)

The constructions we introduce revert to existing ones in case  $C_v = \{r^{-1}(v)\}$  for each  $v \in E^0$ . We refer to a *non-separated graph* in that situation.

## The Leavitt path algebra of a separated graph

### Definition

The Leavitt path algebra of the separated graph (E,C) with coefficients in the field K, is the K-algebra  $L_K(E,C)$  with generators  $\{v,e,e^*\mid v\in E^0,e\in E^1\}$ , subject to the following relations:

(V) 
$$vv' = \delta_{v,v'}v$$
 for all  $v, v' \in E^0$ ,

(E1) 
$$r(e)e = e = es(e)$$
 for all  $e \in E^1$ ,

(E2) 
$$s(e)e^* = e^* = e^*r(e)$$
 for all  $e \in E^1$ ,

(SCK1) 
$$e^*e' = \delta_{e,e'}s(e)$$
 for all  $e, e' \in X$ ,  $X \in C$ , and

(SCK2) 
$$v = \sum_{e \in X} ee^*$$
 for every finite set  $X \in C_v$ ,  $v \in E^0$ .

## Example

Let  $1 \le m \le n$ . Let us consider the separated graph (E(m,n),C(m,n)), where E(m,n) is the graph consisting of two vertices v,w and with

$$E(m,n)^{1} = \{\alpha_{1},\ldots,\alpha_{n},\beta_{1},\ldots,\beta_{m}\},\$$

with  $s(\alpha_i) = s(\beta_j) = v$  and  $r(\alpha_i) = r(\beta_j) = w$  for all i, j, and C(m, n) consists of two elements  $X = \{\alpha_1, \dots, \alpha_n\}$  and  $Y = \{\beta_1, \dots, \beta_m\}$ .

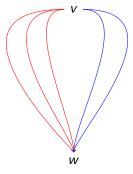


Figure: The separated graph (E(2,3), C(2,3))

## Lemma (E. Pardo)

There is a natural isomorphism

$$\gamma \colon L_{K}(m,n) \to wL_{K}(E(m,n),C(m,n))w$$

given by

$$\gamma(X_{ji}) = \beta_j^* \alpha_i, \quad \gamma(X_{ji}^*) = \alpha_i^* \beta_j.$$

This induces an isomorphism

$$L_K(E(m,n),C(m,n))\cong M_{n+1}(L_K(m,n))\cong M_{m+1}(L_K(m,n)).$$

# Lemma (E. Pardo)

There is a natural isomorphism

$$\gamma \colon L_K(m,n) \to wL_K(E(m,n),C(m,n))w$$

given by

$$\gamma(X_{ji}) = \beta_j^* \alpha_i, \quad \gamma(X_{ji}^*) = \alpha_i^* \beta_j.$$

This induces an isomorphism

$$L_K(E(m,n),C(m,n))\cong M_{n+1}(L_K(m,n))\cong M_{m+1}(L_K(m,n)).$$

Note that

$$\gamma(\sum_{i=1}^{n} X_{ji} X_{ki}^*) = \sum_{i=1}^{n} \beta_j^* \alpha_i \alpha_i^* \beta_k = \beta_j^* \beta_k = \delta_{jk} w$$

and similarly  $\gamma(\sum_{j=1}^m X_{ji}^* X_{jk}) = \delta_{ik} w$  so  $\gamma$  is a well-defined homomorphism, which is shown to be an isomorphism.

### Definition

(E,C) is finitely separated in case  $|X| < \infty$  for all  $X \in C$ .

Algebras associated to separated graphs

(E,C) is finitely separated in case  $|X| < \infty$  for all  $X \in C$ .

### Definition

Let (E,C) be a finitely separated graph. The *monoid* of (E,C) is the abelian monoid M(E,C) with generators  $\{a_v \mid v \in E^0\}$  and relations

$$a_v = \sum_{e \in X} a_{r(e)}, \qquad \forall X \in C_v, \forall v \in E^0.$$

#### Definition

(E,C) is finitely separated in case  $|X| < \infty$  for all  $X \in C$ .

### Definition

Let (E,C) be a finitely separated graph. The *monoid* of (E,C) is the abelian monoid M(E,C) with generators  $\{a_v \mid v \in E^0\}$  and relations

$$a_v = \sum_{e \in X} a_{r(e)}, \qquad \forall X \in C_v, \forall v \in E^0.$$

## Theorem (Goodearl-A)

If (E, C) is a finitely separated graph then the natural map

$$M(E,C) \rightarrow \mathcal{V}(L_{\mathcal{K}}(E,C))$$

is an isomorphism.

For 
$$(E, C) = (E(m, n), C(m, n))$$
, we have

$$\mathcal{V}(L(E,C)) \cong M(E,C) \cong \langle a \mid ma = na \rangle.$$

a result originally due to Bergman.

### Definition

For any separated graph (E,C), the (full) graph C\*-algebra of the separated graph (E,C) is the universal C\*-algebra with generators  $\{v,e\mid v\in E^0,\ e\in E^1\}$ , subject to the following relations:

(V) 
$$vw = \delta_{v,w}v$$
 and  $v = v^*$  for all  $v, w \in E^0$ ,

(E) 
$$r(e)e = e = es(e)$$
 for all  $e \in E^1$ ,

(SCK1) 
$$e^*f = \delta_{e,f}s(e)$$
 for all  $e, f \in X$ ,  $X \in C$ , and

(SCK2) 
$$v = \sum_{e \in X} ee^*$$
 for every finite set  $X \in C_v$ ,  $v \in E^0$ .

### Definition

For any separated graph (E,C), the (full) graph C\*-algebra of the separated graph (E,C) is the universal C\*-algebra with generators  $\{v,e\mid v\in E^0,\ e\in E^1\}$ , subject to the following relations:

(V) 
$$vw = \delta_{v,w}v$$
 and  $v = v^*$  for all  $v, w \in E^0$  ,

(E) 
$$r(e)e = e = es(e)$$
 for all  $e \in E^1$ ,

(SCK1) 
$$e^*f = \delta_{e,f}s(e)$$
 for all  $e, f \in X$ ,  $X \in C$ , and

(SCK2) 
$$v = \sum_{e \in X} ee^*$$
 for every finite set  $X \in C_v$ ,  $v \in E^0$ .

In case (E, C) is trivially separated,  $C^*(E, C)$  is just the classical graph  $C^*$ -algebra  $C^*(E)$ .

## Graph C\*-algebras and dynamics

It is well-known that graph C\*-algebras (of ordinary graphs) are closely related to dynamics. This was first discovered by Cuntz and Krieger for  $\mathcal{O}_n$  and related C\*-algebras  $\mathcal{O}_A$ , nowadays known as Cuntz-Krieger C\*-algebras.

In particular  $\mathcal{O}_n$  is related to the shift on  $X = \{1, \dots, n\}^{\mathbb{N}}$ .

## Graph C\*-algebras and dynamics

It is well-known that graph C\*-algebras (of ordinary graphs) are closely related to dynamics. This was first discovered by Cuntz and Krieger for  $\mathcal{O}_n$  and related C\*-algebras  $\mathcal{O}_A$ , nowadays known as Cuntz-Krieger C\*-algebras.

In particular  $\mathcal{O}_n$  is related to the shift on  $X = \{1, \dots, n\}^{\mathbb{N}}$ .

Note that  $X = \bigsqcup_{i=1}^n H_i$ , with  $X \cong H_i$  for all i.  $(H_i = \{(i, x_2, x_3, \dots, )\}.)$ 

We extend this to the case (m, n), as follows:

# Dynamical systems of type (m,n)

We study pairs of compact Hausdorff topological spaces (X, Y) such that

$$X = \bigcup_{i=1}^n H_i = \bigcup_{j=1}^m V_j,$$

where the  $H_i$  are pairwise disjoint clopen subsets of X, each of which is homeomorphic to Y via given homeomorphisms  $h_i: Y \to H_i$ . Likewise we will assume that the  $V_i$  are pairwise disjoint clopen subsets of X, each of which is homeomorphic to Y via given homeomorphisms  $v_i: Y \to V_i$ .

# Dynamical systems of type (m,n)

We study pairs of compact Hausdorff topological spaces (X, Y) such that

$$X = \bigcup_{i=1}^n H_i = \bigcup_{j=1}^m V_j,$$

where the  $H_i$  are pairwise disjoint clopen subsets of X, each of which is homeomorphic to Y via given homeomorphisms  $h_i: Y \to H_i$ . Likewise we will assume that the  $V_i$  are pairwise disjoint clopen subsets of X, each of which is homeomorphic to Y via given homeomorphisms  $v_i: Y \to V_i$ .

### Definition

We will refer to the quadruple  $(X, Y, \{h_i\}_{i=1}^n, \{v_j\}_{j=1}^m)$  as an (m, n)-dynamical system.

### Definition

An (m, n)-dynamical system  $(X^u, Y^u, \{h_i^u\}_{i=1}^n, \{v_i^u\}_{i=1}^m)$  is universal if it satisfies the following condition: given any (m, n)-dynamical system

$$(X, Y, \{h_i\}_{i=1}^n, \{v_j\}_{j=1}^m),$$

there exists a unique continuous map

$$\gamma: \Omega = X \bigsqcup Y \to \Omega^u = X^u \bigsqcup Y^u,$$

such that

$$\circ$$
  $\gamma(X) \subseteq X^u$ ,

# Example

When m=1, the universal (1,n) dynamical system consists of  $X^u=\{1,\ldots,n\}^{\mathbb{N}},\ Y^u=\{1',\ldots,n'\}^{\mathbb{N}}$ , a disjoint copy of  $X^u$ ,  $X^u=\bigcup_{i=1}^n H_i$ , where

$$H_i = \{(i, x_2, x_3, \dots, ) : x_n \in \{1, \dots, n\}\},\$$

 $h_i \colon Y^u \to X^u$  sends  $(x_1', x_2', \dots)$  to  $(i, x_1, x_2, \dots)$ , and  $v \colon Y^u \to X^u$  sends  $(x_1', x_2', \dots)$  to  $(x_1, x_2, \dots)$ .

In general, the universal (m, n) dynamical system is related to the graph C\*-algebra  $A_{m,n} := C^*(E(m, n), C(m, n))$ , as follows:

## Definition

Let U be the subset of partial isometries in  $A_{m,n}$  given by

$$U = \{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m\}.$$

We will let  $\mathcal{O}_{m,n}$  be the quotient of  $A_{m,n}$  by the closed two-sided ideal generated by all elements of the form

$$xx^*x - x$$
,

as x runs in  $\langle U \cup U^* \rangle$ .

In general, the universal (m, n) dynamical system is related to the graph C\*-algebra  $A_{m,n} := C^*(E(m, n), C(m, n))$ , as follows:

### Definition

Let U be the subset of partial isometries in  $A_{m,n}$  given by

$$U = \{\alpha_1, \ldots, \alpha_n, \beta_1, \ldots, \beta_m\}.$$

We will let  $\mathcal{O}_{m,n}$  be the quotient of  $A_{m,n}$  by the closed two-sided ideal generated by all elements of the form

$$xx^*x - x$$
,

as x runs in  $\langle U \cup U^* \rangle$ .

It is worth to mention that  $A_{1,n} = \mathcal{O}_{1,n} \cong M_2(\mathcal{O}_n)$ , because  $\alpha_1, \ldots, \alpha_n, \beta_1$  is a *tame set* of partial isometries when m = 1.

Note that there is a partial action  $\theta$  of  $\mathbb{F}_{n+m}$ , the free group on  $\{a_1,\ldots,a_n,b_1,\ldots,b_m\}$  on  $\Omega^u=X^u\mid Y^u$ , obtained by sending  $a_i$ to  $h_i$  and  $b_i$  to  $v_i$ .

#### Theorem

There is a natural isomorphism

$$\mathcal{O}_{m,n}\cong C(\Omega^u)\rtimes_{\theta^*}\mathbb{F}_{n+m},$$

where  $C(\Omega^u) \rtimes_{\theta^*} \mathbb{F}_{n+m}$  denotes the crossed product of the  $C^*$ -algebra  $C(\Omega^u)$  by the induced partial action  $\theta^*$  of  $\mathbb{F}_{n+m}$ . Note that there is a partial action  $\theta$  of  $\mathbb{F}_{n+m}$ , the free group on  $\{a_1,\ldots,a_n,b_1,\ldots,b_m\}$  on  $\Omega^u=X^u\bigsqcup Y^u$ , obtained by sending  $a_i$  to  $h_i$  and  $b_j$  to  $v_j$ .

### **Theorem**

There is a natural isomorphism

$$\mathcal{O}_{m,n}\cong C(\Omega^u)\rtimes_{\theta^*}\mathbb{F}_{n+m},$$

where  $C(\Omega^u) \rtimes_{\theta^*} \mathbb{F}_{n+m}$  denotes the crossed product of the  $C^*$ -algebra  $C(\Omega^u)$  by the induced partial action  $\theta^*$  of  $\mathbb{F}_{n+m}$ .

All the above can be generalized to any finite bipartite separated graph (E,C), obtaining C\*-algebras  $\mathcal{O}(E,C)$  which are suitable full crossed products of commutative C\*-algebras by partial actions of free groups.

## The algebra $L_K^{ab}(E,C)$

The theory is very similar in the purely algebraic case. Let (E, C) be as before. We look at the construction in some detail:

## The algebra $L^{ab}_{\kappa}(E,C)$

The theory is very similar in the purely algebraic case. Let (E, C)be as before. We look at the construction in some detail:

Set  $U = \langle E^1 \cup (E^1)^* \rangle$ , the multiplicative semigroup of  $L_K(E, C)$ generated by  $E^1 \cup (E^1)^*$ . For  $u \in U$  set  $e(u) = uu^*$  (not an idempotent in general). Write

$$L_K^{\mathrm{ab}}(E,C) = L_K(E,C)/\langle [e(u),e(u')]:u,u'\in U\rangle.$$

It can be shown that  $\{e(u): u \in U\}$  is a family of commuting idempotents in  $L_{\kappa}^{ab}(E,C)$ .

Let  $\mathcal{B}$  be the commutative subalgebra of  $L_K^{\mathrm{ab}}(E,C)$  generated by the idempotents  $\overline{e(u)}$ , for  $u \in U$ .

There exists a totally disconnected, metrizable, compact space  $\Omega(E,\mathcal{C})$  such that

$$\mathcal{B}=C_{K}(\Omega(E,C)),$$

where  $C_K(\Omega)$  denotes the algebra of locally constant functions  $\Omega \to K$ .

Let  $\mathcal{B}$  be the commutative subalgebra of  $L_K^{\mathrm{ab}}(E,C)$  generated by the idempotents  $\overline{e(u)}$ , for  $u \in U$ .

There exists a totally disconnected, metrizable, compact space  $\Omega(E,\mathcal{C})$  such that

$$\mathcal{B}=C_{K}(\Omega(E,C)),$$

where  $C_K(\Omega)$  denotes the algebra of locally constant functions  $\Omega \to K$ . Moreover there is a partial action  $\alpha$  of  $\mathbb{F} = \mathbb{F}\langle E^1 \rangle$  on  $\mathcal{B}$  (given essentially by conjugation) which induces a partial action  $\alpha^*$  by homeomorphisms of  $\mathbb{F}$  on  $\Omega(E,C)$ . Moreover, we show:

## Theorem

$$L_K^{\mathrm{ab}}(E,C) \cong C_K(\Omega(E,C)) \rtimes_{\alpha} \mathbb{F}.$$

## Example

Our first example is the "pure refinement" example. Let (E,C) be as in the picture, with  $C_v = \{X,Y\}$  and  $X = \{\alpha_1,\alpha_2\}$ ,  $Y = \{\beta_1,\beta_2\}$ . The corner  $vL_K(E,C)v$  is isomorphic to a free product  $K^2*_KK^2$ . The corner of the abelianized Leavitt algebra  $L_K^{\mathrm{ab}}(E,C)$  is isomorphic to  $K^4$ . We thus see a drastic reduction of the complexity in the transition from L(E,C) to  $L^{\mathrm{ab}}(E,C)$ . A similar statement holds for the C\*-algebras  $C^*(E,C)$  and  $\mathcal{O}(E,C)$ .

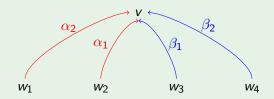


Figure: The separated graph of pure refinement

200

## Example

Let (E, C) be the separated graph described in the Figure, with  $C_v = \{X, Y\} \text{ and } X = \{\alpha_0, \alpha_1\} \text{ and } Y = \{\beta_0, \beta_1\}.$ 

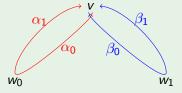


Figure: The separated graph corresponding to Truss example

The Leavitt path algebra  $L_K(E,C)$  is Morita equivalent to the corner vL(E,C)v, which is isomorphic to  $M_2(K) *_K M_2(K)$ .

 $L^{\mathrm{ab}}_{\kappa}(E,C) \cong C_{\kappa}(\Omega(E,C)) \rtimes \mathbb{F}_4$ , where  $\Omega := \Omega(E,C)$  is a 0-dimensional compact space admitting a decomposition  $\Omega = X \sqcup Y \sqcup Z$  into clopen subsets, such that Z decomposes in two different ways as a disjoint union of clopen subsets

This construction is closely related to an example due to Truss, defined using other tools.

 $Z = H_0 \sqcup H_1 = V_0 \sqcup V_1$ , together with homeomorphisms  $\mathfrak{h}_i \colon X \to H_i$  for i = 0, 1, and  $\mathfrak{v}_i \colon Y \to V_i$  for j = 0, 1.

Note that

$$2[X] = [Z] = 2[Y]$$

and Truss showed that  $[X] \neq [Y]$  in the type semigroup.

Let (E, C) be the separated graph described in the Figure, with  $C_v = \{X, Y\}$  and  $X = \{\alpha_1, \alpha_2\}$  and  $Y = \{\beta_1, \beta_2\}$ .

The corner  $vC^*(E, C)v$  is the unital universal C\*-algebra generated by a partial isometry (studied recently by Brenken and Niu).

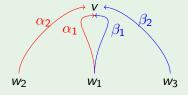


Figure: The separated graph of a partial isometry

The C\*-algebra  $v\mathcal{O}(E,C)v$  is the C\*-algebra of the free monogenic inverse monoid. The 0-dimensional compact space  $\Omega(E,C)$ decomposes as  $\Omega(E,C) = X_{\nu} \sqcup | |_{i=1}^{3} Y_{w_{i}}$ , and we have two decompositions  $X_v = H_{\beta_1} \sqcup H_{\beta_2} = H_{\alpha_1} \sqcup H_{\alpha_2}$  in clopen sets, with a universal homeomorphism  $\alpha := \theta_{\alpha_1} \circ \theta_{\beta_1}^{-1} \colon H_{\beta_1} \to H_{\alpha_1}$ , in the sense that given any other homeomorphism  $\beta: X_1' \to Z_1'$ , where  $X_1'$  and  $Z'_1$  are clopen subsets of a compact Hausdorff space X', there exists a unique equivariant continuous map from X' to  $X_{\nu}$ .

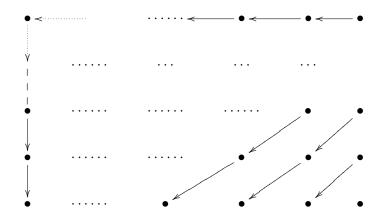


Figure: The compact space  $X_{\nu}$ .

## Example

Let (F, D) be as in the Figure, with  $C_v = \{X, Y\}$  and  $X = \{\alpha_1, \alpha_2\}$  and  $Y = \{\beta_1, \beta_2\}$ . We have

$$vC^*(E,C)v\cong C^*((*_{\mathbb{Z}}\mathbb{Z}_2)\rtimes\mathbb{Z})\quad, vL(E,C)vK[(*_{\mathbb{Z}}\mathbb{Z}_2)\rtimes\mathbb{Z}],$$

where  $\mathbb{Z}$  acts on  $*_{\mathbb{Z}}\mathbb{Z}_2$  by shifting the factors of the free product.

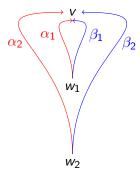


Figure: The separated graph underlying the lamplighter group

It is easy to show that

$$v\mathcal{O}(F,D)v\cong C^*(\mathbb{Z}_2\wr\mathbb{Z}), \qquad vL_K^{\mathrm{ab}}(F,D)v\cong K[\mathbb{Z}_2\wr\mathbb{Z}],$$

where  $\mathbb{Z}_2 \wr Z$  is the wreath product  $(\oplus_{\mathbb{Z}}\mathbb{Z}_2) \rtimes \mathbb{Z}$ . This is a well-known group, called the lamplighter group. This group provided the first counter-example to the Strong Atiyah's Conjecture.

Our results produce in this case the well-known representation of the group algebra of the lamplighter group:

$$K[\mathbb{Z}_2 \wr \mathbb{Z}] \cong vL_K^{\mathrm{ab}}(F, D)v \cong C_K\Big(\prod_{\mathbb{Z}} \mathbb{Z}_2\Big) \rtimes \mathbb{Z}.$$

This algebra is the algebra associated to the bilateral shift on  $\{0,1\}^{\mathbb{Z}}$ .

# **Applications**

- Paradoxical decompositions.
- The realization problem for von Neumann regular rings.

## Paradoxical decompositions

Let G be a group acting on a set X.

 $E, E' \subseteq X$  are **equidecomposable** if

$$E = A_1 \sqcup A_2 \sqcup \cdots \sqcup A_n, \quad E' = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_n$$

and there exist  $g_1, g_2, \ldots, g_n \in G$  such that  $B_i = g_i A_i$  for all  $i = 1, \ldots, n$ .

### Paradoxical decompositions

Let G be a group acting on a set X.

 $E, E' \subseteq X$  are **equidecomposable** if

$$E = A_1 \sqcup A_2 \sqcup \cdots \sqcup A_n, \quad E' = B_1 \sqcup B_2 \sqcup \cdots \sqcup B_n$$

and there exist  $g_1, g_2, \ldots, g_n \in G$  such that  $B_i = g_i A_i$  for all  $i = 1, \ldots, n$ .

The *type semigroup* S(X,G) is defined by using this relation. Elements of S(X,G) are finite sums of equidecomposability classes [E], for  $E\subseteq X$ .

A subset  $E \subseteq X$  is called **paradoxical** if  $E_1 \sqcup E_2 \subseteq E$  with  $E_1 \sim_G E$  and  $E_2 \sim_G E$ .

 $E_1 \sim_G E$  and  $E_2 \sim_G E$ .

Note that  $E \subseteq X$  is paradoxical  $\iff$   $2[E] \le [E]$  in S(X, G).

A subset  $E \subseteq X$  is called **paradoxical** if  $E_1 \sqcup E_2 \subseteq E$  with  $E_1 \sim_G E$  and  $E_2 \sim_G E$ .

Note that  $E \subseteq X$  is paradoxical  $\iff$   $2[E] \le [E]$  in S(X, G).

The Banach-Tarski Theorem (or Paradox) asserts that the unit ball  $\mathbb{B}^1$  is  $\mathbb{G}$ -paradoxical, where  $\mathbb{G}$  is the group of all the isometries of  $\mathbb{R}^3$ .

A subset  $E \subseteq X$  is called **paradoxical** if  $E_1 \sqcup E_2 \subseteq E$  with  $E_1 \sim_G E$  and  $E_2 \sim_G E$ .

Note that  $E \subseteq X$  is paradoxical  $\iff$   $2[E] \leq [E]$  in S(X, G).

The Banach-Tarski Theorem (or Paradox) asserts that the unit ball  $\mathbb{B}^1$  is  $\mathbb{G}$ -paradoxical, where  $\mathbb{G}$  is the group of all the isometries of  $\mathbb{R}^3$ .

The study of this concept led to the notion of amenable group: A discrete group  $\Gamma$  is **amenable** if  $\Gamma$  is not paradoxical.

#### Tarski's Theorem

## Theorem (Tarski)

Let G be a group acting on a set X. Then the following conditions are equivalent:

- E is not G-paradoxical, i.e.  $2[E] \nleq [E]$
- ② There exists a finitely additive G-invariant measure  $\mu \colon \mathcal{P}(X) \to [0, +\infty]$  such that  $\mu(E) = 1$ .

#### Tarski's Theorem

## Theorem (Tarski)

Let G be a group acting on a set X. Then the following conditions are equivalent:

- E is not G-paradoxical, i.e.  $2[E] \nleq [E]$
- **2** There exists a finitely additive G-invariant measure  $\mu \colon \mathcal{P}(X) \to [0, +\infty]$  such that  $\mu(E) = 1$ .

This result gives the transition from the paradoxical decompositions characterization of amenable groups to other characterizations, notably the one involving invariant means.

### About the proof

The proof of Tarski's Theorem is based on the purely semigroup theoretic result:

#### **Theorem**

Let (S,+) be an abelian semigroup and  $e \in S$ . Then the following are equivalent:

- (a) There exists a semigroup homomorphism  $\mu\colon S\to [0,\infty]$  such that  $\mu(e)=1.$
- (b) For all  $n \in \mathbb{N}$ , we have  $(n+1)e \nleq ne$ .

### About the proof

The proof of Tarski's Theorem is based on the purely semigroup theoretic result:

#### Theorem

Let (S, +) be an abelian semigroup and  $e \in S$ . Then the following are equivalent:

- (a) There exists a semigroup homomorphism  $\mu: S \to [0, \infty]$  such that  $\mu(e) = 1$ .
- (b) For all  $n \in \mathbb{N}$ , we have  $(n+1)e \nleq ne$ .

and the following properties of S(X,G):

**Schröder-Bernstein axiom**:  $a \le b$  and  $b \le a \implies a = b$ .

**Cancellation law**:  $\forall n \in \mathbb{N}$ ,  $na = nb \implies a = b$ .

In fact, with these conditions at hand we can easily show that condition (b) in the Theorem is equivalent to  $2e \nleq e$ , or equivalently

$$2e \le e \iff (n+1)e \le ne$$
 for some n.

If 
$$(n+1)e \le ne$$
 then  $(n+1)e = ne$  by Schröder-Bernstein, and then 
$$(n+1)e = ne \implies n(2e) = ne \implies 2e = e$$
 by the cancellation law.

Assume that G acts on a set X and let  $\mathbb D$  be a G-invariant subalgebra of sets of X. Then one can restrict the G-equidecomposability relation to elements of  $\mathbb D$ , and obtain a type semigroup  $S(X,G,\mathbb D)$ .

In recent papers by Rørdam–Sierakowski and Kerr–Nowak, the following particular case has been considered:

G acts by homeomorphisms on a totally disconnected compact Hausdorff space X (e.g. the Cantor set) and  $\mathbb D$  is the subalgebra  $\mathbb K$  of clopen subsets of X.

These authors have raised the question of whether the analogue of Tarski's Theorem holds in this context. More precisely:

Is it true that, for  $E \in \mathbb{K}$ , one has that the following are equivalent?

- (1)  $2[E] \nleq [E]$  in  $S(X, G, \mathbb{K})$ ,
- (2) There exists a semigroup homomorphism

$$\mu \colon S(X,G,\mathbb{K}) \to [0,\infty]$$
 such that  $\mu([E]) = 1$ .



What are the general properties of  $S(X, G, \mathbb{K})$ ? It is easy to show that  $S(X, G, \mathbb{K})$  has the following properties:

- It is conical  $x + y = 0 \implies x = y = 0$
- It has the **Riesz refinement property**: If a + b = c + d then  $\exists x, y, z, t$  such that a = x + y, b = z + t, c = x + z and d = y + t:

We prove that these are the only general properties of  $S(X, G, \mathbb{K})$ :

#### **Theorem**

Let M be an arbitrary f.g. conical abelian monoid. Then there exists a totally disconnected, metrizable compact space X and an action of a finitely generated free group  $\mathbb F$  on it such that there is an order-embedding  $M \hookrightarrow S(X,\mathbb F,\mathbb K)$ .

#### **Theorem**

Let M be an arbitrary f.g. conical abelian monoid. Then there exists a totally disconnected, metrizable compact space X and an action of a finitely generated free group  $\mathbb F$  on it such that there is an order-embedding  $M \hookrightarrow S(X,\mathbb F,\mathbb K)$ .

For instance, taking  $M = \langle a \mid na = ma \rangle$  for 1 < m < n one obtains that there is a clopen subset  $E \subseteq X$  such that  $2[E] \nleq [E]$  in  $S(X, \mathbb{F}, \mathbb{K})$ , but there is no  $\mu \colon S(X, \mathbb{F}, \mathbb{K}) \to [0, \infty]$  such that  $\mu([E]) = 1$ .

In the general setting of a partial action  $\theta$  of a group  $\Gamma$  on a totally disconnected compact space X, we always have a monoid homomorphism:

$$S(X, \Gamma, \mathbb{K}) \longrightarrow \mathcal{V}(C_{K}(X) \rtimes_{\theta^{*}} \Gamma)$$

$$[Y] \mapsto \chi_{Y} \cdot \delta_{e}$$

If  $X = \Omega(E, C)$  for a finite bipartite separated graph (E, C), we are able to show:

#### **Theorem**

The natural homomorphism

$$S(\Omega(E,C),\mathbb{F},\mathbb{K})\longrightarrow \mathcal{V}(C_{K}(\Omega(E,C))\rtimes_{\alpha}\mathbb{F})$$

is an isomorphism



Now, starting with a finitely generated conical abelian monoid M, we choose a finite bipartite separated graph (E, C) such that  $M \cong M(E, C)$ , and so we get a totally disconnected metrizable compact space  $\Omega(E,C)$  with a partial action  $\alpha^*$  of  $\mathbb{F}=\mathbb{F}\langle E^1\rangle$  such that there is an order-embedding

$$M \hookrightarrow \mathcal{V}(L^{ab}(E,C)) \cong S(\Omega(E,C),\mathbb{F},\mathbb{K}).$$

Applications

Finally, using globalization techniques due to Abadie, we can reach the same conclusion, but with *total actions* instead of *partial actions*, obtaining:

#### **Theorem**

Let M be an arbitrary f.g. conical abelian monoid. Then there exist a totally disconnected, metrizable compact space X and an action of a finitely generated free group  $\mathbb F$  on it such that there is an order-embedding  $M \hookrightarrow S(X,\mathbb F,\mathbb K)$ .

Finally, using globalization techniques due to Abadie, we can reach the same conclusion, but with total actions instead of partial actions, obtaining:

#### Theorem

Let M be an arbitrary f.g. conical abelian monoid. Then there exist a totally disconnected, metrizable compact space X and an action of a finitely generated free group  $\mathbb{F}$  on it such that there is an order-embedding  $M \hookrightarrow S(X, \mathbb{F}, \mathbb{K})$ .

## Corollary

There exist a global action of a finitely generated free group  $\mathbb{F}$  on a totally disconnected metrizable compact space Z, and a non- $\mathbb{F}$ -paradoxical (with respect to  $\mathbb{K}$ ) clopen subset A of Z such that  $\mu(A) = \infty$  for every finitely additive  $\mathbb{F}$ -invariant measure  $\mu \colon \mathbb{K} \to [0, \infty]$  such that  $\mu(A) > 0$ .

## The realization problem for von Neumann regular rings

#### Definition

A ring R is said to be *von Neumann regular* if  $\forall a \in R \ \exists b \in R$  such that a = aba.

The realization problem for von Neumann regular rings asks whether all the countable conical refinement monoids appear as monoids  $\mathcal{V}(R)$  for some regular ring R.

In a joint paper with Brustenga, the monoids of the form M(E), for a non-separated graph E, where realized by a certain 'algebra of fractions'  $Q_K(E)$  of the Leavitt path algebra  $L_K(E)$ .

In a paper with Goodearl, we have investigated the problem for the refinement monoid M arising from the group algebra of the free monogenic monoid:

#### **Theorem**

If K is an uncountable field, then there is no regular K-algebra R such that  $V(R) \cong M$ . If K is a countable field then there is a regular K-algebra R with  $V(R) \cong M$ .

In a paper with Goodearl, we have investigated the problem for the refinement monoid M arising from the group algebra of the free monogenic monoid:

#### **Theorem**

If K is an uncountable field, then there is no regular K-algebra R such that  $\mathcal{V}(R) \cong M$ . If K is a countable field then there is a regular K-algebra R with  $\mathcal{V}(R) \cong M$ .

The monoid M is presented by generators

$$x_0, y_0, z_0, a_1, x_1, y_1, z_1, a_2, x_2, y_2, z_2, \dots$$

and relations

$$x_0 + y_0 = x_0 + z_0$$
,  $y_l = y_{l+1} + a_{l+1}$ ,  $z_l = z_{l+1} + a_{l+1}$ ,  
 $x_l = x_{l+1} + y_{l+1} = x_{l+1} + z_{l+1}$ .



- P. Ara, K. R. Goodearl, *C\*-algebras of separated graphs*, J. Funct. Anal. **261** (2011), 2540–2568.
- P. Ara, K. R. Goodearl, *Leavitt path algebras of separated graphs*, Crelle's journal, **669** (2012), 165–224.
- P. Ara, Purely infinite simple reduced graph C\*-algebras of one-relator graphs, J. Math. Anal. Appl. **393** (2012), 493–508.
- P. Ara, R. Exel, T. Katsura, Dynamical systems of type (m, n) and their associated C\*-algebras, Ergodic Theory and Dyn. Systems **33** (2013), 1291–1325.
- P. Ara, R. Exel, Dynamical systems associated to separated graphs, graph algebras, and paradoxical decompositions, Advances in Mathematics, **252** (2014), 748–804.